Role of TEE in Left Atrial Appendage Closure: Lessons Learned

Maurice Buchbinder, MDCM, FACC, FSCAI

Medical Director Foundation for Cardiovascular Medicine San Diego, California

> Professor of Clinical Medicine Stanford Hospital and Clinics Stanford, California

DISCLOSURE STATEMENT OF FINANCIAL INTEREST

In the past 12 months, I or my spouse/partner has had a financial interest/arrangement with the organization(s) listed below.

BSCI

- Scientific Advisory Board Member
- Speaker Bureau
- Equity Ownership

TEE is all I need.....

- TEE is a widely available imaging modality highly reliable, safe, easy to use , and happens to be the *only validated* technique for guidance and sizing for left atrial appendage closure
- TEE is affordable and can be used a *sole imaging tool* for screening, procedural guidance, and post implant evaluation

From a Cardiologist Perspective why is TEE the main imaging modality for LAAC

- Pre procedure (Pt. Screening)
 - TEE (advantages/disadvantages) "Validated" findings
- Guidance during implant
 - TEE (advantages/disadvantages)
 - Post procedure
 - 45 day follow up for sealing and proper device placement to guide ongoing medication regimen
- Cost effectiveness and Workflow

Pre-Procedural TEE for LAA Closure:

Provides a means to:

Rule out LAA thrombus

Detail LAA anatomy:

- Bends (location, angulation)
- Lobes, bifurcation
- Pectinate muscle/ridge/trabeculation

Envision LAA device fit

Assess surrounding structures (IA septum, LA, PV)

Measure LAA dimensions

Select fluoroscopic angles if needed

Determine sheath selection

Determine transseptal location

Pre-Procedural 3-D° TEE enhances anatomical definition tow ards LAA Closure 135° PV

LAA

Posterio

Ao

Standard validated TEE views for optimal LAAC include:

Understanding TEE

135° Regardless of the anatomy type

Unlike CT, TEE views and measurements have been *validated* in robust clinical experience with WATCHMAN:

- 0 and 135 degrees often give widest ostium diameter
- 45 and 90 degrees usually give the most depth
- Depth should be ≥ ostium diameter to accommodate WM
- Anterior lobes usually superior
- Posterior lobes usually inferior
- WM oversizing 9-25% (>2-4mm)

Routine measurements using TEE in various projections for optimal sizing

From a Cardiologist Perspective why is TEE the main imaging modality for LAAC

- Pre procedure (Pt. Screening)
 - TEE (advantages/disadvantages) "Validated" guidelines
- Guidance during implant
 - TEE (advantages/disadvantages)
- Post procedure
 - 45 day follow up for sealing and proper device placement to guide ongoing medication regimen
- Cost effectiveness and Workflow

TEE for procedural guidance

Intra Procedural TEE

- Guide trans septal puncture
- Guide placement of access sheaths
- Guide device placement and assess release criteria

TEE is the easiest imaging modality to aim for safe and precise trans septal puncture: "inferior-posterior"

Bicaval View:

• 90-100 degrees

TEE guidance for trans septal puncture: Tenting while aiming inferior-posterior

Always assess for & avoid PFO

TEE for LAAC device implant: Access Sheath Guidance

TEE for LAAC device implant: Access Sheath Guidance

Visualize LAA & LUPV:

• 30-50 degree & counterclock

TEE for WATCHMAN implant : Guiding Deployment

TEE for WATCHMAN Implant: Tug Test

TEE for WATCHMAN implant: Compression & Seal

- Device compression 8-20%
- Peri-device leak <5mm

TEE for WATCHMAN implant: 3D TEE before Release

Assess Residual Iatrogenic Atrial Septal Defect & Pericardial effusion

TEE vs ICE

• TEE

- Widely Used imaging modality with significant experience and expertise amongst many operators. Highly reproducible results in experienced operators
- Can be done under moderate sedation and not with general anesthesia
- Safe and least expensive imaging modality with no excessive radiation exposure
- Results validated thru decades of studies correlating TEE findings with acute and long term LAAC outcomes

From a Cardiologist Perspective why is TEE the main imaging modality for LAAC

- Pre procedure (Pt. Screening)
 - TEE (advantages/disadvantages) "Validated" guidelines
- Guidance during implant
 - TEE (advantages/disadvantages)
- Post procedure
 - 45 day follow up for sealing and proper device placement to guide ongoing medication regimen
- Cost effectiveness and Workflow

TEE for Routine Device Surveillance Post-LAAC

- Important to assess for:
 - Residual leak (LAA patency)
 - Device-associated thrombus
 - Device positioning (embolization)
 - Surrounding structures
 - Pericardial effusion

• TEE should be routinely done at 1-6 months post-LAA closure to assess for these abnormalities and determine optimal post implant medication regimen

From a Cardiologist Perspective why is TEE the *Optimal* imaging modality for LAAC

- TEE remains the most commonly used, least expensive and most versatile imaging modality to support LAAC implant
- TEE is the only imaging modality tested in RCTs
- There is much desire to use other imaging techniques in order to:
 - Increase patient comfort
 - Facilitate pre-case planning
 - Reduce number of personnel required to perform procedure
 - Improve/Optimize device placement
- Studies will be needed to correlate and confirm that measurements with other techniques compare favorably to the proven track record and excellent outcomes with TEE as the sole imaging modality

